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Abstract
This paper proposes M3, an end-to-end system that dynami-
cally distributes memory resources among competing appli-
cations to maximize their overall performance. Today’s data
center workloads, can adapt to a wide range of memory sizes,
and they are built on complex software stacks.

M3 consists of a set of mechanisms and policies allowing
the layers of the system stack to make coordinated decisions.
Applications continuously adapt to current resource availabil-
ity, and resources are distributed to competing applications
according to their needs. Experiments show that compared
to the best possible static configurations, M3 achieves up to
3.05x speed-up.
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1 Introduction
This paper addresses the problem of dynamically distribut-
ing memory resources among competing applications, to
achieve the best performance. While this is a well-trodden
problem [9], the interplay of two characteristics of today’s
data center workloads creates new challenges.

First, many data center applications are elastic. Conven-
tional working set theory predicts that giving an application
more memory than its working set does not improve perfor-
mance, but that it will plummet with less. However, appli-
cations like data analytic frameworks or caches can run the
same workload with a wide range of memory sizes. Their
performance continuously improves with increasing amounts
of memory, yet they still make (degraded) progress when
provided with less.
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This creates the problem of how to best distribute memory
among elastic applications, to maximize overall performance.
For example, given two jobs A and B, we could distribute the
physical memory equally so they complete in, say, 10 seconds,
or 70%/30% so they complete in 8 seconds, or 20%/80% at
the beginning so that B finishes first; after which A has 100%
of the memory, leading to an end-to-end completion time of
5 seconds. All these options result in different completion
times, while all having a memory utilization of 100%.

In addition, many of these applications are built on complex
software stacks, where each layer performs its own memory
management (MM) in isolation from the other layers. For
example, data analytics applications typically run on top of
a framework, such as Hadoop [16] or Spark [33], which it-
self runs on a managed language runtime (e.g., Java Virtual
Machine (JVM) [15]), all running on top of the OS. Each
layer has its own set of mechanisms and policies for MM:
The OS abstracts away physical memory, providing processes
with nearly infinite virtual memory; the JVM then abstracts
away virtual memory, with its own allocation and reclama-
tion policies, i.e., garbage collection (GC); above that Spark
automatically partitions the big data input into blocks, and
selects a subset to fit into memory.

This further complicates the memory distribution problem.
It is fundamentally impossible for applications to optimally
distribute physical memory between themselves when physi-
cal memory is abstracted away. As a result, language runtimes
and analytics frameworks rely on static user configuration.
The use of static configuration makes it fundamentally im-
possible for applications to dynamically adjust the amount of
allocated memory, in response to changes in physical memory
availability. In addition, multiple layers performing MM in an
uncoordinated manner may lead to tunnel-visioned decisions.

Prior work provides different approaches to dynamically
distribute memory in a way that outperforms optimal static set-
tings for applications that are both elastic and run on complex
software stacks. Apart from MemOpLight [22], only resource
deflation [30] and application ballooning [28] address com-
plex software stacks. Resource deflation aims to reduce the
memory usage of preemptable virtual machine (VM), and it
can further deflate the applications inside the VMs. However,
it merely focuses on avoidance of resource exhaustion, and
does not address the problem of how to distribute the memory
resources to maximize performance. Application ballooning
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extends the original VM ballooning [36] to multiple appli-
cation layers. It provides only mechanisms instead of policy
for memory distribution. Similar to M3, MemOpLight also
distributes policy across the applications, recognizing that ap-
plications have the ideal understanding of their performance
characteristics. However, in MemOpLight the applications
signal the kernel to perform the work, while in M3 the kernel
signals the applications to perform the work. MemOpLight
also only considers two layers, the kernel and the container.

This paper proposes M3, an end-to-end system that dynam-
ically distributes memory among elastic, stacked applications
running on bare-metal kernels.1 Its goal is to dynamically
adapt memory distribution among competing applications,
based on their changing needs, to maximize the overall sys-
tem performance (i.e., throughput). It consists of a set of
mechanisms and policies that are inserted into each layer.
We implemented M3 in a variety of application stacks, such
as Linux (the OS), OpenJDK JVM and Go (language run-
times), Spark, our own key-value memory cache Go-Cache,
and Memcached (applications).

M3 is driven by three design principles: an end-to-end
approach, adapting dynamically, and non-intrusiveness. Ac-
cording to the end-to-end argument [29], the lowest layer
(OS) only notifies the upper layers upon (physical) memory
pressure, and leaves the decision of how, when, and by how
much memory to allocate and reclaim to the higher level ap-
plications. Fundamentally, the application, instead of the OS,
is in the best position to make the such decisions [29].

The second principle is to be adaptive. The distribution of
memory is governed by an adaptive allocation protocol that
each application on M3 is modified to run. The protocol has
two goals. The first is to slow the growth of an application’s
memory usage when the system is under pressure, when al-
lowing applications to grow freely would lead to thrashing.
The second is to distribute available memory resources based
on each application’s memory demands.

As a result, memory distribution under M3 continuously
adapts to changes in application memory demands and system
memory availability. The policy used by the OS to decide
when to notify the applications is also adaptive. Instead of
using a fixed threshold for memory pressure, we propose an
algorithm that dynamically adjusts the threshold.

The third design principle is practicality. M3 opts to lever-
age existing mechanisms, in order to minimize deployment
hurdles. This is possible as elastic applications already have
mechanisms for memory reclamation in place, such as GC.
While applications still require modification to implement the
polices, little modification is required for the mechanisms.

1M3 stands for Monolithic Memory Management; “3” also indicates that it
is capable of handling complex software stack with three or more layers.
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Figure 1. Spark’s performance improvement of with increased
memory. The experimental set up is the same as §7, except that sys-
tem memory is allowed to be large enough to fit the entire workload.

We evaluate M3 by thoroughly comparing it with the best
static configuration on stock systems under sixteen work-
loads. With each workload, wetested as many static config-
urations as possible, and compare M3 with the best one for
each workload. We aim to challenge M3, as the configurations
require knowledge of future scheduling, require modifying
settings that are not recommended to be changed, and are
highly sensitive to the benchmark. Yet M3 can still achieve
a 1.60x speed-up on average, and 3.05x in the best case,
because it adapts to the dynamic changes of a workload’s
resource needs. We also show that M3 is efficient, as it in-
troduces only an average of 3.77% overhead on workloads
that do not benefit from dynamic resource distribution. The
source code of all M3 components is publicly available at
https://github.com/dsrg-uoft.

M3 has the following limitations. First, not all workloads
will benefit from M3. If a static memory distribution will
provide the best performance, such workloads will not benefit
from M3. In addition, we cannot guarantee that M3’s memory
distribution is optimal. Finally, M3 is designed for cooperative
applications that will follow the policies of M3 and do not
maliciously allocate memory, or hold onto memory to starve
other applications.

2 Motivation
This section explains the elasticity and complexity of a data
center application stack in more detail. It then discusses the
motivation of the M3 design.

2.1 Elasticity of Data Analytics Workload
We focus our discussion on data analytics workloads, as the
elasticity of cache workloads has been well studied [4, 7, 38].

Figure 1 shows the performance of Spark, running two
benchmarks from HiBench [18], as we vary max heap size
settings. Job completion time improves over a wide range of
heap sizes. For k-means, performance improves with heap
size ranging from 8 GB to 40 GB. PageRank’s performance
also improves over a wide range, between 12 GB and 76 GB.
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Figure 2. A Cassandra server and an Elasticsearch server (running
on the JVM) with alternating loads. In an unmodified environment
the JVMs climb to their peak and stay at a combined usage of 30
GB. Running on M3 only 15 GB of physical memory is required.

Performance stops improving only beyond 40 GB and 76 GB
respectively. This is when the heap can store the entire input.
If we use a larger input size, the job completion time will
improve over an even wider range.

This elasticity stems from the MM design of both Spark
and the JVM. Spark is designed to process data much larger
than physical memory. Therefore it partitions input data into
blocks, and keeps only a subset in an in-memory cache for
processing. At startup, Spark reserves a portion of the JVM
max heap size for the block cache. If this cache is full when
allocating a new block, Spark will create space for the new
block by evicting existing blocks, through a replacement
policy.

We measure the time Spark spends in handling capacity
misses of its in-memory cache, and show it as bars with back
slashes in Figure 1. For the k-means workload, the majority of
the completion time is spent on Spark’s MM, where smaller
heap sizes cause it to constantly swap its cached data.

GC also results in memory elasticity. The max heap size
setting embodies a trade-off between completion time and
memory usage, which has a wide range of possibilities. A
large heap size setting leads to less time spent on GC, whereas
a small one leads to longer GC time. This can be seen in the
bars with crossing lines in Figure 1, which measure the JVM’s
GC pause time.2

Elasticity of applications complicates the policy for MM.
If an application behaves following the working set model, a
developer can use a simple all-or-nothing policy [9]: run an
application if and only if there is enough RAM for its working
set; when more resources become available, begin to run a
new application rather than distributing memory to existing
ones. Elastic applications bring up a whole new dimension: a
developer needs to further consider how to distribute memory
among applications to achieve the best overall performance.

2Even when the max heap size is set to be very large, there is still a constant
cost of GC. For example, PageRank spends at least 328.62s on GC, regardless
of the setting. JVM maintains an internal heap size watermark regardless of
the max heap size, and each time the heap usage grows past this watermark
it performs GC and increases this watermark.

2.2 MM Issues in the System Stack
The MM issues in complex application stacks stem from three
sources: the use of static settings, opaque memory utilization
between layers, and uncoordinated MM activities. Let us
examine each in detail.
Problem 1: Static Settings. Static settings fundamentally
cannot adapt to dynamic changes of physical memory avail-
ability, or changes in application demands for memory. When
physical memory becomes available, existing applications are
unable to allocate this memory. Furthermore, static settings
force the operator to overprovision memory for an applica-
tion’s peak memory usage [26, 39]. However, this is at the
expense of system utilization.

Figure 2 shows an example of two JVM applications that
have alternating memory peaks. The JVM will hold onto its
peak memory amount without returning it back to the OS,
even when the application only peaks for a short amount of
time. This leads to poor effective memory utilization. In this
workload, the effective memory requirement is 15 GB. How-
ever, the administrator needs to provision 30 GB of memory,
half of which is essentially wasted, and cannot be used by any
other application. In comparison, running the same workload
on M3 requires half the memory resources in order to achieve
the same completion time.

Tuning these static settings also requires tremendous ex-
pertise. Numerous articles provide “best practices” that often
offer hand-waving or even contradicting information. For ex-
ample, a blog post on Spark performance tuning [20] suggests
to “avoid using executors with too much memory” while
later suggesting “avoid using small executors to be able
to benefit from running multiple tasks.” Another blog post
states that memory overcommitment is a common technique,
based on the assumption that not all provisioned memory is
needed [39]. However, it also says that this assumption may
result in memory exhaustion and processes being killed. In
fact, JVM developers have posted numerous bug reports over
the years that propose to eliminate the static heap size (all
were closed without fix) [8].

Rather than a static heap size, other language runtimes such
as Go, Python, Ruby, and CLR control the frequency of GC.
In Go, whenever newly allocated data grows by a configured
proportion GOGC, it will run GC. However, the frequency of
GC does not have a clear relationship with physical memory
usage. Therefore GC can still be performed unnecessarily
when memory is abundant, or be not performed when it should
upon memory pressure, leading to thrashing or even being
killed. In fact, many bug reports ask for a static max heap
size, and Go developers are working on providing it [13, 14].
Problem 2: Opaque Memory Utilization Information. It is
difficult for lower layers to understand the amount of memory
required by an application, as upper layers that perform MM
obfuscate this information. For example, a language runtime
such as the JVM will greedily use up its entire max heap size
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before aggressively performing GC. To the OS, this memory
appears in use, even though the vast majority of it consists of
garbage. This leads to an effective underutilization of memory
resources, which in turn leads to poor performance, as such
memory cannot be allocated to other applications. It could
further trigger expensive OS swapping, when a much more
efficient solution would be for the JVM to perform GC instead.
Similarly, the JVM has no knowledge of the block cache in
Spark, and must assume for correctness that all memory held
by the cache is required. This problem is compounded with
multiple layers, as each layer holds onto unused memory.
Problem 3: Uncoordinated MM. Layers performing MM in
an isolated and uncoordinated manner will also lead to issues.
Being unaware of the MM activities in the upper layers, the
lower layer can make unnecessary or non-optimal decisions
that hurt performance. For example, if the JVM performs GC
before Spark, the upper layer, has released memory, there will
less opportunity for the GC cycle to reclaim.

2.3 M3: End-to-End Approach Made Practical
Solving any problem in a layered system faces the question of
“which layer should be responsible for what.” Prior works have
articulated the benefit of an end-to-end principle [12, 21, 29],
i.e., resource management decisions should be made by the
upper layer applications: “as they know better than operating
systems what the goal of their resource management deci-
sions should be and therefore, they should be given as much
control as possible over those decisions” [12]. Lampson and
Sproul [21] note that general-purpose abstractions unavoid-
ably force applications that do not need them to pay a cost. In
fact, these applications use static settings to work around the
abstraction provided by the OS. While abstracting away phys-
ical memory information is desirable for most applications, it
handcuffs applications that do need to make decisions based
on physical memory usage.

Unfortunately, an end-to-end design doesn’t often go hand-
in-hand with practicality, as it typically requires complete
changes of the interfaces and breaks the application ecosys-
tem. M3 follows the end-to-end argument, yet it’s still prac-
tical. We observe that the only decision that requires global
information, known only by the OS, is to determine when sys-
tem memory resources are under pressure. All other decisions
are left to the application layers. We further observe that exist-
ing systems already have the required mechanisms, without
the need of a complete overhaul.3 For example, the OS already
exposes physical memory information and signals; runtimes
and applications typically have well-tuned mechanisms to
reclaim memory. M3 provides policies that coordinate and
control the use of application mechanisms, to balance system
memory usage in order to maximize performance.

3We refer to the functionality provided by applications to coordinate memory
management across layers as mechanisms.
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Figure 3. M3’s architecture.

3 Overview of M3
Figure 3 shows the M3 architecture. We introduce a monitor
that continuously observes the system’s physical memory us-
age. M3 uses two signals, each associated with a threshold
that the monitor adjusts dynamically. If memory usage grows
past these thresholds, the monitor sends signals to processes
so that they can return memory. The low threshold signal
(yellow arrow in Figure 3) is an early warning, sent when
system memory begins to become scarce. If memory pres-
sure continues to increase and the high threshold is reached,
M3 sends a high threshold signal (red arrow in Figure 3) to
selected processes.

We use multiple thresholds instead of one to allow flexi-
bility. An application needs to consider the trade-off among
three factors when deciding how to reclaim memory: speed
of reclamation, amount of memory reclaimed, and future
performance impact. For example, generational GC can per-
form a young collection, which garbage-collects only newly
allocated objects and hence completes quickly, or a full col-
lection, which is slower, but returns much more memory, as it
scans the entire heap [2]. Spark or a memory cache can evict
blocks/items to return even more memory, at the expense of
future performance. Having two signals allows applications
to trade-off different reclamation algorithms.

The signals are propagated to each layer that registered to
handle them; each layer decides for itself whether and how
it should handle each signal. For example, when the JVM
receives a signal, it forwards it to Spark first, and performs GC
after Spark evicted data from its cache. This maximizes the
effectiveness of GC, as there is now a large portion of garbage
memory to reclaim. The downward arrows in Figure 3 shows
the order of memory reclamation.

The numbers in Figure 3 show the order of events that
take place when the system experiences memory pressure.
First, the monitor sends signals to processes registered with
M3. The lowest application layer then forwards the signal to
upper levels (step 2). The upper layers perform reclamation
before the lower level (step 3). Afterwards, applications slow
down their memory growth, using M3’s adaptive allocation
protocol, until no more signals have been received for some
period of time.
Target workloads. In general, workloads will benefit from
M3 when a static setting is not optimal for overall system
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Layer App.
Policy Mechanisms

Low Signal High Signal Adaptive Allocation Return Memory API to Upper Layer

U
pp

er

Spark Call down to JVM Evict blocks + call JVM Call JVM Not necessary
Go-Cache Light eviction + call Go Heavy eviction + call Go Call Go (Item delete)

Memcached Light eviction Heavy eviction Use jemalloc (Item delete)

Lo
w

er JVM Young GC Mixed GC Not necessary madvise Fine grain GC API
Go GC GC Not necessary madvise Fine grain GC API

Table 1. Policies and mechanisms designed for various applications that we modified/implemented. Parentheses around “Item
delete” indicates that the API already exists.

performance. Specifically, they should have the following
three characteristics:

∙ Multitenancy: memory is shared among multiple appli-
cations running at the same time.
∙ Large peak usage: the sum of the peak of memory us-

ages is greater than the total amount of physical mem-
ory. Otherwise one could statically allocate each appli-
cation with its peak memory size.
∙ Changing needs: the memory needs of each application

change dynamically and independently of each other.
If their needs don’t change, e.g., each application has
a constant working set size, there is no opportunity
for adaptation when M3 dynamically redistributes the
memory. If their memory needs always change in-sync,
then a static partition will be ideal.

In practice, applications running on language runtimes
and caches are ideal targets. These applications are typically
elastic, hence by definition they will have a large peak usage,
as their performance would continue to improve with more
memory.

4 Application Policy and Mechanism
This section describes the mechanisms and policies designed
and implemented in M3. Mechanisms refer to technical tools
that perform a specific functionality used by M3. A policy
describes how and when such mechanism are used. Table 1
summarizes the mechanisms and policies we designed and
implemented, for four real-world applications and our self-
made Go-Cache. Note that the number of layers can vary; for
instance Memcached has no “Lower” runtime layer. It is also
possible for applications to benefit from M3 without every
layer needing modification. For example, in Figure 2 from
§2.2, Cassandra and ElasticSearch leverage M3 without being
modified, by leveraging the modifications already made to
the underlying JVM.

4.1 Mechanisms
In M3 a MM layer must be capable of returning memory to the
layer below it. For example, a runtime must return memory
to the OS. If this mechanism does not already exist, the layer
should implement it to be integrated into M3. In practice, we

found that applications rarely return memory to the OS, but
can be modified to do so, using existing mechanisms, e.g.,
madvise to return memory freed from the application to the
OS.

For example, the JVM rarely usually holds onto memory
freed by GC. Therefore, we modify the JVM to return mem-
ory to the OS by using the madvise system call whenever a
heap region is freed. Similarly, Go returns free regions to the
OS, if they have not been used for 5 minutes. As this is not
sufficient to respond to memory pressure, we modify Go to
return heap regions to the OS with madvise as soon as they
are collected. It is the policies of M3 that control when to
reclaim memory, and therefore the use of a mechanism. Sim-
ilarly, Memcached uses malloc/free by default, which
does not return free memory back to the OS, therefore we
replaced it with jemalloc, which does.

The granularity of memory reclamation is an issue. For
example, a typical memory cache’s eviction policy is at the
granularity of individual items. However, memory can be
returned to the OS only with page granularity. Therefore, for
Go-Cache and Memcached, we evict an entire slab of key-
value pairs to ensure we have contiguous memory to return to
the OS.

M3 also requires that a layer to notify the layer below it,
when it has finished reclamation. This allows memory recla-
mation to be done in the correct order. For an application to
completely benefit from M3, all of its layers should partici-
pate in memory reclamation. If a lower layer, such as the JVM,
is integrated into M3, an unmodified application above it still
benefits as the JVM will still return memory to the OS. How-
ever, the benefit will be limited, if the application itself does
not reclaim memory when necessary. In practice, such mech-
anisms often already exist. The JVM already expose APIs for
applications to trigger GC, but only at the granularity of a full
GC. We added another API to trigger less expensive, incre-
mental GC, to be used on a low threshold signal. Similarly,
memory caches (Go-Cache and Memcached) already provide
APIs for the application to delete items explicitly.

4.2 Policies and the Adaptive Allocation Protocol
An application policy involves three parts: (1) handling low-
threshold signals, (2) handling high-threshold signals, and (3)
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adaptively controlling allocation when the system is under
pressure (i.e., upon receiving a high-threshold signal). Signal
handling is relatively straightforward. On a low threshold
signal, the application performs light-weight reclamation, pri-
oritizing speed over the quantity of memory reclaimed. On a
high threshold signal, heavy-weight reclamation prioritizes
the quantity of memory reclaimed, to avoid exhaustion.

For instance, when the Spark stack receives a low-threshold
signal, it does not evict from its cache: it merely calls the JVM
to perform a fast young collection. It handles a high threshold
signal differently, by evicting blocks from its cache (at the
expense of increased cache misses). It then calls down to the
JVM, collecting both young and old regions in a “mixed GC,”
collecting more memory than a young GC. Similar policies
are used for Go-cache and Memcached, as shown in Table 1.

We design an adaptive allocation protocol to slow down
applications’ memory allocation after a high-threshold signal
is received. This is needed because for most applications,
allocating memory is faster than reclaiming memory, so the
rate of allocation can outpace concurrent reclamation. Hence,
when a high-threshold signal is received, indicating that the
system is under memory pressure, we need to slow down
applications’ allocation to avoid memory exhaustion.

The protocol works by adaptively calculating the rate of
allowed allocation. The value of this rate is within the range
of [0, 100%]. For example, if this rate is 10%, then only 10%
of the allocations are allowed, with the other allocations being
delayed. When the system is not under pressure, the rate is
100%, meaning every memory allocation is allowed. Right
after the application receives a high-threshold signal, this
rate drops to nearly zero, meaning almost all allocations are
delayed. The rate then gradually increases as time elapses.

This rate of allowed allocation is determined as:

Allow rate = min (
Time elapsed since last signal
Epoch length×NUMepochs

, 100%)

The rate depends on three parameters: (1) time elapsed since
receiving the last high-threshold signal, (2) the length of the
epoch, which is the time spent handling the last high-threshold
signal, and (3) the number of epochs (NUMepochs ). The first
2 parameters are automatically computed by M3, whereas
NUMepochs is a static user configuration. Next, we discuss
each parameter in turn:

1. The rate increases linearly with the time elapsed since
the last high-threshold signal was received, until it
reaches 100%. When a new signal is received, this
rate is reset to 0.4

2. An epoch is defined as starting from when the appli-
cation receives the signal, to when memory has been
returned. Using the epoch length as the denominator re-
wards applications that reclaim memory fast: the faster

4We experimented with other strategies, such as exponential growth instead
of linear, and found that this protocol is the most effective.

an application can reclaim memory, the faster it is al-
lowed to grow.

3. NUMepochs controls how long the allocation control
should be applied after each signal: the allow rate
reaches 100% after NUMepochs epochs of time elapses.
Hence, the larger NUMepochs is, the longer allocation
control is applied. We set this value to 1 in Spark in our
experiment, and 5 for the Go-Cache and Memcached.
This is because Spark stack takes longer to reclaim
memory, therefore a small NUMepochs value 1 is suffi-
cient and achieves the best performance.

We implement this protocol by modifying the allocation
function(s), generically referred to as alloc(), used by the
application. Only the

⌊︀
1
𝑟

⌋︀
-th alloc() is allowed to proceed

as normal, where 𝑟 is the allow rate. For example, if the allow
rate is 10%, then only the 10th allocation will be allowed,
with other allocations delayed. We recalculate the allow rate
every time the allocation function is invoked.

When an allocation is delayed, we first invoke the memory
eviction function(s) inside alloc(), to free space that is
enough to satisfy this allocation. After eviction completes,
alloc() will proceed as normal. This eviction is performed
by the same thread that invoked alloc(). As a result, de-
layed allocation does not affect correctness, as it never fails
an allocation; the thread that invokes a delayed alloc()
will only experience a longer return time. In fact, delayed
allocation already exists in unmodified elastic applications:
when memory usage reaches the static maximum size, they
will first perform eviction until enough space is created to
service the allocation, such that usage does not increase past
maximum size.

Note that shrinking is performed by signal handlers and
the adaptive protocol does not shrink an application’s mem-
ory usage; instead, it only prevents it from expanding (on
those allocations that get delayed). The evicted memory is
not returned to the OS; instead it is replaced with the newly
allocated data.

Adaptive allocation is relevant only for the top-most mem-
ory management layer (Spark, Go-Cache, and Memcached),
as that is where memory allocations originate. For example,
in a Spark stack, the allocations come from Spark itself, and
if allocations are already delayed at the Spark layer, it’s not
necessary to delay them further in the JVM. Additionally, this
is also the layer with the best domain knowledge. For exam-
ple, the Go-Cache can decide between rejecting a request to
store key-value pair entirely or servicing the request after first
evicting other items.

With every application stack running this adaptive proto-
col, M3 achieves a near-optimal overall memory distribution
in a decentralized manner. An application with low signal
handling overhead is rewarded with faster growth, as it will
have a higher allow rate. If the memory growth causes sig-
nals by crossing the thresholds, the application has shown

512



M3: End-to-End Memory Management in Elastic System Software Stacks EuroSys ’21, April 26–28, 2021, Online, United Kingdom

it will handle these signals promptly and reclaim memory
well before exhaustion. Thus overall system performance is
improved with no consequence.

The protocol also adapts to the application’s need for re-
sources. Two applications with similar signal handling time
will have similar allow rates. However, the application expe-
riencing higher memory demand will have more alloc()
calls. This leads to more alloc() calls without delay, that
grow the application’s memory as they do not perform evic-
tion. Thus, the application with higher memory demand sees
more memory growth.

We run the adaptive protocol on high-threshold signals only.
The reasons are twofold: (1) the protocol can significantly
impact application performance, so it is unnecessary when
the resource usage is not in the “red zone”, and (2) it is very
effective in curbing growth, so it’s safe to only run it on
high-threshold signals.

4.3 Guidelines for Porting Applications
Porting other applications will involve similar policies and
mechanisms as in Table 1. We speculate that the most compli-
cated task would be to design and add reclamation algorithms,
such as GC, to an application that does not already have them.
As explained in §3, memory reclamation needs to trade speed
for amount reclaimed and performance impact.

In our experience, an effective approach is to handle the
signal quickly, even if it returns only a small amount of mem-
ory. There are multiple advantages. First, handling a signal
quickly reduces memory pressure immediately, preventing
exhaustion. The system operates at higher utilization, because
M3 will adaptively increase the thresholds if memory pressure
is relieved (see §5). Returning a small amount of memory will
reduce negative performance impact. This leads to a more ag-
ile system, where applications are capable of handling many
signals and incrementally return memory. This memory can
be quickly redistributed among applications, based on their
changing needs at fine granularity. In fact, we find modern GC
algorithms are also moving toward this direction. For exam-
ple, HotSpot JVM’s implements the Garbage-first (G1) [10]
GC algorithm which performs quick, incremental cycles that
only collect a subset of memory, as opposed to the traditional
stop-the-world full-heap GC cycle.

In practice, we found using the existing memory reclama-
tion utilities in applications to be sufficient. The only prob-
lematic case was Memcached’s use of malloc. However, we
found jemalloc to be a suitable drop-in replacement, and
believe it can be used for other applications using malloc.

Applications based on managed runtime environments pose
different challenges. A runtime provides its own memory
management system, such as in the JVM or Go, and will
reclaim application memory. However, this memory must
still be freed by the runtime in order to be returned to the
OS. This, in turn, requires that the runtime supports M3.
This is a one-time cost, across all applications. On the other

Figure 4. The high and low memory usage thresholds.

Algorithm 1: Sending the high threshold signal.

1 Array reg procs← all registered processes;
2 Sort reg procs;
3 Array proc group← ∅;
4 Int expected← 0;
5 Int target← memory used − high threshold;
6 if target <= 0 then
7 return;
8 end
9 for p in reg procs do until expected >= target

10 Signal p;
11 expected← expected + (p’s expected reclamation

amount);
12 end
13 return;

hand, we found that porting the managed applications to be
simpler compared to unmanaged ones. As the runtime handles
memory management, the application logic does not contain
deallocation code.

5 Design of the M3 Monitor
The primary job of the monitor is to alert processes of scarce
physical memory. It uses two dynamically adjusted thresholds,
namely the high and low threshold. It polls system memory,
and when it sees memory past a threshold, it sends a signal it.

Figure 4 shows the two thresholds. The monitor is con-
figured with a value for the top of memory, the acceptable
amount that can be used by applications running on M3. Typ-
ically, this is set at or just below total physical memory. The
two thresholds partition it into three zones: green when mem-
ory usage is under the low threshold, yellow between the low
and high thresholds, and red past the high threshold.

5.1 Selective Notification
The monitor should signal only select processes for the high
threshold signal, in order to minimize the overhead of sig-
nal handling. The goal of the selection algorithm (shown in
Algorithm 1) is to drop the system below the high threshold.
It runs once per polling period, while the usage is above the
high threshold.
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The algorithm sorts the processes, based on a configurable
sorting order. The higher ranked processes will be signaled.
M3 currently supports four sorting orders: newest to oldest
(favors batch jobs), oldest to newest (favors interactive jobs),
memory usage (largest to smallest), or expected reclamation
amount (largest to smallest), computed as the average recla-
mation of this process over the last five signals. We use newest
to oldest in our evaluation.

The loop from line 9 to 12 selects the processes to be
signaled. It goes through the sorted processes and signals
each one, until the sum of the expected reclamation amount
is larger than 𝑡𝑎𝑟𝑔𝑒𝑡.

Note that if memory consumption continues to rise above
the user configured top of memory, the monitor will signal all
processes with the high threshold signal in hopes of reclaim-
ing all possible memory. After a configured amount of time,
if system memory is still above the top of memory, processes
must be killed. M3 uses Algorithm 1 again to select processes
to kill, until system memory drops below the top.

5.2 Adaptive Thresholds
Statically configured thresholds are undesirable. If the thresh-
olds are set low, applications that reclaim memory quickly
are forced to do so before there is any danger of exhausting
memory, leading to resource under-utilization. Conversely, if
the thresholds are set too high, applications may not finish
reclamation before the system exceeds the top of memory, ex-
hausting memory and causing swapping. Furthermore, there is
no optimal static setting when there is a variety of workloads
on the system. For example, say there are two applications, A
and B, where A reclaims memory slowly and B reclaims mem-
ory quickly. These applications have different ideal threshold
settings, as A requires low thresholds to ensure enough time to
reclaim memory, while B would benefit from high thresholds
due to its quick reclamation allowing it to avoid the overhead
of handling unnecessary signals. If these applications are run
one after the other, it is not possible to statically configure the
ideal thresholds for both applications. Therefore, M3 updates
the thresholds dynamically.

The low threshold should temper how often system mem-
ory reaches the high threshold. Intuitively, if the high thresh-
old is reached more often than expected, the low threshold
should be lowered by the monitor. On the other hand, if the
high threshold is reached less often than expected, the low
threshold should increase. Let 𝑇red be the time spent above the
high threshold and 𝑇green or yellow be the time spend below the
high threshold. These times are calculated over a configurable
sliding window. If the ratio of 𝑇red : 𝑇green or yellow is larger
than a configured target, the low signal threshold is lowered.
If this ratio is less than the target, the low signal threshold is
increased by the monitor.

The low threshold is updated only under certain conditions
to avoid over fitting. It is lowered only if the system is above
the high threshold (in addition to the ratio being above the

target). If system memory has already dropped below the
high threshold, the means that memory pressure is already
relieved; hence there is no reason to further lower the low
threshold. Similarly, if the system is already below the low
threshold, there is no reason to raise the low threshold because
no signals are sent anyway. Additionally, the low threshold
cannot be greater than the high threshold.

Adapting the high threshold is similar to the low threshold,
only that it aims to achieve the ratio of time spent above
and below the top. The logic on when to raise and lower the
threshold based on a ratio is exactly the same, but now based
on the top value. While constantly operating above the top of
memory is undesirable, if system memory never reaches top,
there is opportunity to increase memory utilization by raising
the high threshold. If system memory spends too much time
above the top, applications are already continuously receiving
signals. Lowering the high threshold will not change the
number of signals sent or amount of memory applications
reclaim. However, it will ensure that applications receive
signals sooner, and begin reclaiming memory earlier.

Note that M3 does not adjust thresholds when the system is
operating in the green or yellow zone. Operating in the yellow
zone is not problematic, as long as the system is below the
high threshold.

6 Implementation
We implement a monitor for M3, and modify the JVM, Spark,
the Go runtime, and Memcached to function under M3. We
use the HotSpot JVM in OpenJDK 1.8 build 25.71, Spark
v2.3.2, Go v1.11rc1, and Memcached v1.6.7. We also built
Go-Cache, a cache that is capable of expanding and returning
memory to the OS. Next we describe our implementation
details and parameters.
The monitor. We implement the monitor as a user-space
process on Linux. Processes register by creating PID files
in a known directory. The monitor polls MemAvailable in
/proc/meminfo once every second. The two signals are
real-time signal numbers, provided by Linux for application-
defined purposes. The monitor is implemented in approxi-
mately 600 lines of C++ code.

In the evaluation system, the top of memory is set to 62
GB (out of 64 GB available), while the low and high thresh-
olds are initialized to 50 GB and 55 GB respectively and are
adjusted dynamically. Both the low and high threshold ratios
are set to 1:32. These ratios are calculated over a configurable
sliding window, defaulting to the past 32 polled memory val-
ues. Each time the thresholds are moved, they are adjusted by
a configurable 2% of the top of memory.
JVM modifications. We implement M3 on HotSpot’s Garbage-
first (G1) GC algorithm [10], the default starting in OpenJDK
9 [27]. In order to implement the threshold signal handling
and expose API to upper layers we modified approximately
200 lines of C++ code and 20 lines of Java code in the JVM.
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To run Elasticsearch for Figure 2 in §2.2, we also ported the
changes to OpenJDK 12.
Spark modifications. Recall that Spark sizes its block cache
based on JVM’s max heap size setting. We modified Spark so
that the block cache is set to a very large size. Therefore Spark
will continue to add blocks until it is limited by M3’s signals.
Every time a high threshold signal is received, Spark evicts 1

8
of the blocks with an LRU policy. We added approximately
250 lines of Scala and Java code for Spark.
Go modifications. It took approximately 50 lines to imple-
ment the changes described in §4.
Go-Cache. Go-Cache is implemented as a library that ap-
plications can import, a practice widely adopted by industry
(for example, both Google’s LevelDB and Facebook’s Cache-
Lib [4] are designed as library). On a high threshold signal,
4% of slabs are evicted with a LRU policy, while the low
threshold signal evicts 1%. The library and benchmark con-
tain approximately 300 and 200 lines of code respectively.
Memcached implementation. Similarly to Go-Cache, Mem-
cached also uses slabs. We modified Memcached to evict the
same proportion of slabs on signals, in approximately 170
lines of code.

7 Evaluation
We run the following experiments on M3 evaluating its per-
formance and adaptability: (1) the speedup compared to the
unmodified systems that are optimally configured; (2) the
worst-case overhead; (3) M3’s ability to utilize memory more
effectively; (4) the effectiveness of M3’s dynamic thresholds.

7.1 Methodology
All tests are performed on an in-house cluster with 8 worker
servers and 1 management server. Each server has a Xeon
E5-2630V3, 16 virtual core, 2.4GHz CPU. Each server has
64 GB of available memory set by a Linux control group. We
chose 64 GB to mirror the memory to virtual core ratio on
Amazon EC2 M5 general purpose servers [3]. Each server
has one 7,200 RPM hard drives, is connected via 10Gbps
interconnect, and runs Linux 4.15.0.

We setup a Spark cluster in standalone mode on top of an
HDFS cluster (v2.8.5) used to store input data. The 8 worker
servers each run a Spark Worker and an HDFS Datanode. For
each job, Spark spawns a single multi-threaded JVM process,
known as an executor, on each node scheduled to run the job.
The Go-Cache benchmark consists of a single process using
the Go-Cache library on each node. We give each job 5 cores
per node as most of our workloads consist of 3 concurrent
jobs.

7.1.1 Workloads. Our tests are run using the HiBench [18]
benchmarking suite, which consists of 15 Spark tests. Three
of them are used in this study: PageRank, n-weight, and k-
means. We chose these three benchmarks as they benefit from

having more memory. PageRank, n-weight, and k-means have
5.7 GB, 1.8 GB, and 89.8 GB of input data on HDFS.

The Go-Cache benchmark first preloads Go-Cache with
85% of a key space of 12 million keys. This is done to sim-
ulate an in-use system, and avoid cold-misses which inflate
the runtime. It then performs 6.5 million uniform random get
requests over the key space. If the key is not present, the gor-
outine sleeps for 1 millisecond to simulate a backend lookup,
then performs a put.Although, it is not common practice to
run a dedicated caching server alongside analytics jobs, it
is common for various applications to have their own inter-
nal cache through a library [4]. As we run a benchmark that
imports the Go-Cache library, it is not an ideal real world
application. However, an application importing the Go-Cache
library running alongside other applications is a realistic sce-
nario that we try to replicate.

We made a best effort to cover a comprehensive set of
workloads, totaling to 16 workloads. A workload consists of
multiple applications, each scheduled with varying amounts
of delay. We run each workload and configuration pair 5
times.

We ensured to evaluate M3’s theoretical worst cases. M3
has no opportunity to improve workloads during periods
where there is no available system memory and memory is
partitioned optimally, or when all applications have sufficient
memory to run optimally. Workloads consisting of identical
applications, with no delay, guarantee that there is no possi-
bility for improvement. The optimal resource distribution is
known (equal partitioning), and at any point in time the ap-
plications’ memory demands are identical. Of the workloads,
four consist of identical applications with no delay.

7.1.2 Configuration settings. M3 is compared against four
different settings using unmodified applications. The Default
setting uses default configurations of each application. It repli-
cates a naive setting. The Globally Optimal, Oracle, and
Oracle With Spark configuration (OWS) settings challenge
M3 against increasingly unrealistic degrees of configuration
tuning.

In the Default setting, the default JVM heap size is 16 GB
on a system with 64 GB of memory. The default GOGC en-
vironment variable is 100, meaning GC will be performed
every time the heap grows by 100%. For Go-Cache we set
the cache size to 16 GB, mimicking the JVM. We also leave
all Spark configurations at their defaults.

The Globally Optimal setting assigns each application a
single set of configurations that minimizes the average run-
time of all 16 workloads. In other words, it is optimized
for these 16 workloads as a whole. This requires extensive
application profiling and configuration tuning, as well as
knowledge of all possible workloads. Foreknowledge of all
possible workloads is practically impossible, while exten-
sive configuration tuning is extremely time consuming. The
two Spark parameters we test are memory.fraction, and
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Figure 5. Runtime performance of various workloads, comparing M3 with the 4 unmodified settings. Applications W, P, C, and M refer to
n-weight, PageRank, Go-Cache, and k-means respectively. The number below is the delay between each job in seconds. We report the average
speedup of all jobs in the workload compared to M3. The workloads are sorted by M3’s speedup (or slow-down) compared to the oracle with
Spark configuration setting.

memory.storageFraction. Note that Spark recommends
leaving these values at their defaults, as changing them can
have unexpected affects on performance [32].

The Oracle setting uses the best found static memory par-
titioning for each individual workload to maximizes its per-
formance. This differs from the Globally Optimal setting as
now the configurations differ in each workload. It is com-
pletely impossible to implement in practice as it requires
future knowledge of the specific scheduling and combination
of applications to be run. We modify the JVM heap size and
the GOGC parameter. The OWS setting further adds tuning to
the Spark configuration to the Oracle setting. This represents
the ultimate challenge for M3 as all configuration settings
of each application are tuned specifically for the particular
workload and scheduling being run.

We did a thorough search for the optimal configurations
in each of the last three settings trying combinations of the
four parameters: JVM heap size, the two Spark parameters,
and GOGC. In theory, the search space is infinite, because each
of the four parameters can have infinite values. We use our
domain knowledge to limit the search space to only likely
candidates. Over the course of four months, we performed
more than 3400 tests over sixteen workloads. We selected the
configuration combinations that result in the best performance
for each setting.

7.2 Speedup
Figure 5 compares M3 to the four environments over the
twelve workloads, out of the sixteen, that are not the theoreti-
cal worst case for M3. We report the average speedup of each
application’s running time within a workload. Specifically,
we first calculate the speedup of each of the three application
within a workload. Then we take the average of these three
speedups, and further average them across the five runs. Re-
porting the speedup of each application is more meaningful
than comparing the end-to-end completion time of all three
applications because (1) the end-to-end completion time can

be significantly affected by the scheduling delay we added
between two applications, and (2) it can also be dominated by
a single long-running application (hiding the effect to other
applications).

M3 achieves an average of 1.60x speedup over the OWS
setting among the twelve workloads, with a best case speedup
of 3.05x. Recall that this setting represents the best possible
configuration for each workload.

Compared to the Oracle setting, M3 achieves an average
speedup 1.86x, and 3.05x in the best case. Compared to the
Globally Optimal setting, M3’s average speedup is 1.83x
with a 3.35x best case. The Global Optimal setting has better
performance than the oracle setting, because it additionally
uses the optimal Spark settings.

With the Default settings, nine of the twelve workloads
cannot even run. For instance, n-weight cannot complete with
the default heap size. Compared to the workloads that did
finish, M3 has 2.62x speedup.

M3 speeds up performance, because even under the best
static setting, a workload does not always perfectly utilize
memory. With static settings, applications must be partitioned
such that the combined peak memory usage fits in system
memory. If this peak is not maintained for the entire work-
load, then memory will be underutilized, allowing M3 to per-
form better. Additionally, the globally optimal environment
requires certain workloads to be underutilized, as memory
must be partitioned according to other workloads.

7.2.1 Understanding M3’s Speedup. Figure 6 shows work-
load MMW 180, one of the workloads with the best speedup,
under M3 and under the OWS setting.5 The memory profile
is taken from one node of our tests in Figure 5. The workload
consists of two k-means jobs followed by an n-weight job,
each with a 3 minute delay. Under M3, the two k-means are

5Note that in Figures 6, 7 and 10, the benchmarks finish earlier under M3.
This confirms that M3 makes better utilization of the memory resources.
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Figure 6. Memory profile from the MMW 180 workload. Top: M3. Bottom: OWS.
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Figure 7. Memory profile taken from the CMW 180 workload. Top: M3. Bottom: OWS.

able to quickly utilize more memory. For them, we measured
that Spark is able to cache 55% more blocks under M3.

M3 can accommodate for spikes in memory which do not
overlap. Both k-means jobs peak at around 30 GB, but the
best static setting in the unmodified systems must provision
for the combined peaks, allowing only a physical memory
usage of 16 GB each. Unmodified Spark must aggressively
evict blocks from its block cache, spending over three times
more than M3.

Under M3, n-weight is able to use much more memory after
the k-means applications finish, and thus avoid GC. The JVM
spends approximately 90 seconds in stop-the-world GC under
M3, compared to 200 seconds in the unmodified systems.
Finally, in an unmodified system, there is a compounding

effect, as the jobs overlap and additionally suffer from disk
contention. M3, applications overlap less, as they finish faster,
minimizing disk contention.

Figure 6 also shows the effectiveness of the monitor’s
threshold adjustment. Both the low and high thresholds gradu-
ally increase at the beginning, as the system operates under the
high threshold. Starting around the 815 second mark, usage
repeatedly reaches the high threshold, causing the low thresh-
old to drop. However, the high threshold keeps increasing, as
the system still operates underneath the top of memory.

Figure 6 further shows the effectiveness of application
policies. First, applications reclaiming memory is effective
in relieving pressure. Even the low threshold signals (e.g.,
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Figure 8. Runtime performance of the four theoretical worst-case
workloads where each workload consists of identical applications
started with no delay.

the ones that occur at the 341 and 557 second marks) ef-
fectively reclaim significant amount of memory. In addition,
even though usage creeps up to the red zone, the adaptive allo-
cation protocol is effective in slowing down allocation to keep
operating underneath the top, as shown by the continuous rise
of the high threshold.

Figure 7 graphs M3 and the OWS setting for the CMW 180
workload. It shows that M3 partitions memory according
to the applications’ needs. The k-means job uses less mem-
ory than the Go-Cache job as it has lower demand. After
Go-Cache finishes at 434 second mark, k-means quickly con-
sumes a lot of memory, as memory pressure has decreased
and signals stop. Later in the benchmark, n-weights acquires
more memory than k-means, as it has a higher demand.

Note that the peaks of the three jobs are at 44.48 GB,
42.83 GB, and 58.15 GB respectively. Their sum is well above
system memory, at 145.46 GB. Static partitioning would not
allow this, but under M3 these jobs run without issues, as
their peaks do not coincide. Under M3 all three jobs finish
faster than under the OWS setting.
Overhead of M3 in the Worst Case. Figure 8 shows M3’s
performance in the worst-case scenarios for M3. The work-
loads start identical jobs all at the same time, creating a sce-
nario where using static configuration should provide the best
performance. M3 achieves an average slow-down of 3.77%,
compared to the OWS setting, with a worst-case slow-down
of 7.00%. This is because in an unmodified environment, a
similar amount of GC and eviction would need to be per-
formed to keep the heap size below the static limit, yet M3
adds overhead in its handling signals.

M3 can still beat the Oracle setting, where equal memory
partitioning is optimal, as seen in the workload MMM 0. With
the default Spark parameters, Spark will not use more than
60% of the heap for storage space. Therefore, the remaining
40% of the heap is under-utilized, as Spark has limited its
memory usage based on static settings.

Memcached. To show that M3 is fully capable of work-
ing with a wide variety of applications, including native
ones, we include a workload using Memcached. To evalu-
ate Memcached with M3, we run a workload consisting of
a Spark k-means job followed after a 4 minute delay by a
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Figure 9. Runtime performance of a workload consisting of a
Spark k-means job followed after a 4 minute delay by a Memcached
benchmark. The left bar shows the runtime under M3, while the
right bar shows an unmodified version.

memtier [19] Memcached benchmark, shown in Figure 9.
We didn’t have enough time to evaluate Memcached with a
variety of workloads. Similarly, we were unable to compre-
hensively cover many static settings and used a best effort
approach. The Spark job and the Memcached server run on
a single node with 8 GB of memory. The Spark Master and
memtier benchmark run on a separate server. M3 achieved
an average application speedup of 2.23.

7.3 Optimizing Effective Memory Utilization
M3 can improve effective memory utilization. Applications
often hold onto memory that they do not require, e.g., the
JVM rarely returns freed memory to the OS. Hence, the uti-
lization observed by the OS can be misleadingly larger than
the effective utilization.

This can be observed in Figure 6 and 7, where in unmodi-
fied systems the total memory used observed by the OS (grey
dotted line) is close to RAM size (64 GB) most of the time,
whereas it’s much lower in M3. Specifically, the average mem-
ory utilization, measured in RSS, is 63 GB and 54 GB for
unmodified systems for Figures 6 and 7 respectively, whereas
it is 38 GB and 48 GB for M3. Hence, the unmodified work-
loads waste 25 GB and 6 GB respectively. The memory saved
by M3 can allow additional applications to run, increasing
both effective utilization and system throughput. Figure 2 in
§2.2 shows a similar issue.

7.4 Dynamic Threshold Analysis
Figure 10 compares dynamic high and low thresholds with
static ones. Both the static low threshold and the dynamic
initial low threshold are set to 40 GB. The static high thresh-
old and the dynamic initial high threshold are set to 45 GB.
M3 detects that the applications are able to return memory,
and raises both the thresholds. Because of the improved mem-
ory usage, the workload with dynamic thresholds terminates
1.93x earlier than the static one.
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8 Related Work
M3 provides a unique approach to balancing memory among
elastic, stacked applications, in order to maximize their col-
lective performance. In M3 application allocation tends to-
wards a global optimum thanks to the cooperation of policies
implemented in each application. By propagating reclaimed
memory down through each memory management layer to the
OS, M3 leverages each layers domain specific knowledge for
fine grained memory collection, while also avoiding requiring
modifications to the kernel.
MM across multiple application layers. Sharma et al. pro-
pose “resource deflation” to deflate preemptable virtual ma-
chines under memory pressure [30]. The deflation controller
notifies both the VM and the applications inside the VM to
evict memory. This approach is implemented with the Spark
stack and with Memcached. M3 has the following differences.
First, the goal of resource deflation is to prevent VMs from
being killed, instead of dynamically distributing resources
for performance. When resources become available, resource
deflation prioritizes adding in more VMs, instead of increas-
ing the performance of existing ones. It does not have pol-
icy to control the memory growth of applications, whereas
M3’s adaptive allocation protocol curbs memory growth. In
addition,VM resizing occurs only when a regular VM is cre-
ated, whereas M3 redistributes memory in real-time. Finally,
in Sharma et al., Spark releases memory by killing a task,
whereas in M3 we signal it to evict blocks. Killing a task
won’t be helpful, as Spark will restart the same task, which
will reuse the memory just freed. Since M3 keeps all nodes
in the cluster at a high resource utilization, restarting the task
on a different node will encounter the same problem.

Laniel et al. present MemOpLight, which has similar goals
to M3 but a different approach [22]. MemOpLight recog-
nize that, as Linux relies on static memory limits to isolate
containers, it cannot adapt to dynamic application behavior.
Therefore, similar to M3, MemOpLight leaves policy deci-
sions to applications, which have a much better understanding
of their performance characteristics. In both MemOpLight
and M3 the distributed policy across applications coordinates
their efforts towards global optimal memory utilization. In
contrast to M3, in MemOpLight it is the applications that sig-
nal the kernel, which then deallocates physical pages. On the
other hand, in M3 the applications perform the deallocation
themselves after being signaled by the kernel, allowing for
finer grained memory control. Unlike M3, MemOpLight only
targets two layers, the kernel and the container.

Other works provide mechanisms, instead of policies, to en-
able cross-layer MM. Waldspurger’s ballooning, enables VMs
to dynamically expand and shrink memory usage, through
a device driver mechanism [36]. Salomie et al. extend VM
ballooning [36] to multiple layers in the application stack in-
side of the VM, but defers to future work [28]. M3 could use
these mechanisms to integrate with the VMs and hypervisor.
However, this would introduce additional policy challenges,
as memory must be balanced across the applications inside
a guest OS, and across the VMs. If only a single application
were to run inside a VM, then the policy to manage VMs on
a hypervisor would be very similar to managing applications
in an OS.

Windows [25], Linux [11], and Facebook’s oomd project [39]
propose mechanisms to notify applications upon memory
pressure. Microsoft’s Common Language Runtime provides
APIs to expose this notification to the application [24]. Sim-
ilarly, Oracle provides Cooperative Memory Management
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in their elastic cloud environment, where a system memory
monitor informs registered applications about memory pres-
sure levels. These works are strictly mechanisms and leave
all policy decisions to the developers.
Memory coordination. Other works dynamically resize the
heap size of applications, but cannot be applied to complex
application stacks, where multiple layers perform MM. They
either rely on working sets [9], miss ratio curves (MRCs) [7,
31, 37, 38, 43], or the GC frequency in JVM [6].

Some proposals dynamically resize the JVM heap size,
based on system memory availability. Appel et al. design
a garbage collector that resizes the JVM’s heap based on
suggestions from an advisor [1]. CRAMM builds on this work
by designing a JVM garbage collector that calls down to the
OS to resize its heap based on the working set size [40]. These
works consider only GC and completely ignore MM by upper
layers. They do not control the memory growth when there
is memory pressure. Therefore, elastic applications cannot
leverage resizing based on their semantics. In addition, in
these works the policy decision is made by the lowest layer
(advisor or OS), instead of upper layers as in M3. Finally,
CRAMM requires a completely new virtual memory system
to collect detailed page reference information.

Taurus [23] synchronizes GC pauses across different JVMs
running the same Spark job. Taurus does not deal with dis-
tributing memory or complex multi-layer stacks, but solve a
different problem, that of coordinating multiple JVMs.
Cluster management frameworks. Existing cluster man-
agement frameworks, such as Borg [35], Mesos [17],
YARN [34], Hurricane [5], and Spark [41, 42], are able to dy-
namically schedule workloads at the granularity of containers
(or executors in Spark’s case). However, scheduling relies on
a statically configured memory size.

Borg [35] allows resource overcommitment by scheduling
more containers than the total size of physical memory. How-
ever, it does not provide a mechanism to notify containers to
shrink, and it resorts to killing jobs when physical resources
run out.

9 Concluding Remarks
Many applications today are elastic, and built on complex
software stack consisting of the OS, language runtimes, and
cache-like applications. Each layer abstracts physical mem-
ory resources away to ease development. An unfortunate
consequence for performance is that memory resources are
statically distributed based on user settings, such as the max
heap size in the JVM. These settings are hard to tune; and the
static nature means that fundamentally, they cannot react to
workload or utilization changes.

We developed M3, which bridges memory abstractions
between layers. When there is no memory pressure, appli-
cations can freely allocate memory and expand. When the
system falls under memory pressure, signals are propagated

to the upper layers of applications. Upon receiving signals,
the upper layers reclaim memory and adaptively control their
memory allocation, with different layers operating in a coor-
dinated manner to continuously adapt to the current resource
availability. Compared to optimally configured stock systems,
M3 achieves up to 3.05x speed-up, while having an average
speedup of 1.60x.

This paper also leaves some questions for future work. M3
does not guarantee that the memory distribution is optimal
(defined by maximum system throughput). Ideally, we could
measure the optimal memory distribution for each workload
used in our evaluation and compare it with M3. However,
searching for the optimal distribution is challenging, given
the complex nature of today’s systems software. Therefore,
it is unclear whether M3 achieves optimality, and if not, how
far away it is.

In addition, we would also like to understand M3’s effec-
tiveness on a broader set of applications. Are there other class
of applications that are also elastic and hence can benefit on
M3? Do they exhibit different characteristics that require re-
design of M3? Also, can M3 be extended to virtual machines
or containers? These are the questions we hope to answer in
future work.
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